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An effective solution of the integral Equation 

w 6% Y) = ss PWI)KW& (r = V(z - 5)’ + (Y - qP) (0.1) 

Is constructed herein for an elliptic domain in the case of the power kernel 
K (r) = &-l-k Equation (0.1) is hence related to the Dlrlchlet problem for 
a certain second order differential operator. Such a method permits finding 
the elgenfunctions of Equation (0.1) which are kindred to Lame ellipsoidal 
functions and when m(x,y) Is a polynomial permits the calculation of p(x,v) 
as well as the continuation of m(x,y) outside the limits of the domain of 
integration. In passing, formulas are obtained for the evaluation of certain 
Integrals analogous to potentials and other results are found which have 
analogs In Newton potential ,theory and Lame ellipsoidal functions. 

The connection between the settling m(x,v) and the pressure P(x,y In 
the theory of a linearly deformable foundation Is taken in the form of t 0.1) 
where the kernel K(r) is a monotonely decreasing function, K(m) = 0, has 
a singularity of not higher than the second order at the point r=O (in 
order to insure convergence of the Integral). 

No special assumptions are made In this theory relative to the nature of 
the elastic deformation of the underlying space or layer. For a homogeneous 
elastic half-space K(r) =15-l. 

Other forms of the dependence K(r), discussed In [1], are possible for 
Inhomogeneities and other deviations from the hwothesls of an elastic half- 
space. In particular, a kernel of the form K(r)=Cr-'-k is mentioned. 
This latter case is usually Interpreted as corresponding to the growth In 
the modulus of elasticity with depth in proportion to sk (k>O) However, 
such an interpretetion requires special assumptions [2]. 

Attention was turned in [3] to the fact that the kernel cr-lVk, where 

r= V(z-~)B+(~-Vt~B 

is cancelled by the operator 

A* = A + kz-l -& 
The connection with the Dlrlchlet problem for this operator was used to 

solve (0.1) in the case of UJ = const An effective solution of (0.1) was 
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given in [4] for the case of lo(r,v) . a polynomial, based on the use of con- 
tour integration. However,this method does not permit the calculation of 
the value of mf+,y) outside the boundaries of the domain of integration. 

Moreover, 
Pb,Y) 

the theorem proved in [4] that &,y) is a polynomial if 
has the form of a polynomial multiplied by the expression 

(I- s2/a2_ y2/b2)'/&1) 

is not accompanied by the inverse theorem and the applicability of themethod 
of undetermined coefficients always when Z&G,@) is a polynomial thereby 
remains unproved. 

This inadequacy is removed herein, where a proof of this inverse theorem 
is presented at the end of section 4. 

1. The connection between Equation (0.1) and the Dirichlet problem 

broadens the possibility of an approach to the solution of this equation in 

all cases when the differential operator admits of separation of variables. 

However, not every kernel admits of such a possibility. Let us clarifywhen 

this will hold. Components of the Laplacian n and multiplication by the 

constant @ enter naturally into the operator A*which cancels the kernel 

K(r), r = 1/(5-- f)" + (y- 9)e + z2 Non-positive sign of 8, B = - y" is 

required for K(r) to be monotone. Only da.2 of the first derivatives may 

enter and, with the factor kz-' besides, since dK i dz = .w-~ K (r). 
Therefore, the operator has the form 

A*=A++$-r” 
and Equation 

K”(r) + 2*K, (r) - y2K (r) = 0 

is obtained for K(r). 

(The constant factor k may not be replaced by the function p(r) since 

the expression A* does not contain the parameters 5 and n ). 

Then the Macdonald functions (with a supplementary power factor) 

K ( r) = Cr-‘J~-‘~“KK_,,,_~,2~ (y r) (1.3) 

+are possible kernels. 

When y = 0, the power function isK(r) = Crl-k.As regards the constant 

k, keeping in mind the singularity of the kernel at r = 0 , we must have 

k>--li for convergence of the Integral kc1 is necessary. Thus -l<k< 1 

for all y. 

In case y f 0 the construction of normal solutions encounters consider- 
able difficulties associated with the necessity for a numerical solution of 
transcendental equations (in the form of an infinite-order determinant) from 
which the characteristic values of the accessory parameters in the differ- 
entlal equations obtained in the separation will be found. 

In the y = 0 case this difficulty is absent and the theory is developed 
more-or-less analogously to the theory of Newtonian potential for an ellip- 
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tical disk. The analysis of the corresponding Dirichlet problem for A* in 
place of (0.1) broadens the sphere of application of the theory and makes 
possible the transfer of the results to other domains. 

Let us consider Equation 

(1.4) 
in the domain Z > 0 and its solution in the form 

?J(x, Y9 4 = s\ f (4, rl) dS 4 
” [(z - E)Z + (y - q)% + Z+‘fk) (1.5) 

in place of (0.1). 

We assume the function y(<, n), the source density, to be continuous 

almost everywhere on the boundary z = 0 and to satisfy the Lipschitz con- 

dition. 

It was proved in [3] that uner these assumptions 

(1.6) 

Requirements for uniqueness of the solution arise in connection with (1.5) 

and (1.6): it must be 0(R-'-k) at infinity and the function akau/az should 

have a finite limit almost everywhere for a = 0. Under these requirements, 

the uniqueness is obtained by the customary method from the identity 

1 ‘pzk ‘6 ds = \ cpzkA*'p dz f \ zk (~cp)~ dz 
S Yr T 

(1.7) 

applied to the spherical segment B 

> h, x2 + y2 + z2 < R2 (h-+O,R+oo) 

Certain integrals of the form of (1.5) are evaluated in the next section 
by reducing them to single integrals. It is proved that if the function 
f(x, I/ ) has the form of the product of t%(k-l) and a polynomial P(t), where 
t = l--ra/as --a/9,' then F(X, v) = V(X, g, 0) within a disk is a polynomi- 
al. Simultaneously formulas are obtained which represent V(x, y, 2) every- 
where outside the disk by single integrals (containing parameters). This 
proposition is in itself an interesting analog of the known proposition on 
the Newtonian potential of an ellipsoid with an ellipsoidal distribution of 
the attracting masses. Application of this result to the Dirichlet problem 
is limited because of the dependences connecting the coefficients of the 
polynomial F(x, g). Use of known pressure distributions in the solution 
of contact problems [5] and [6] corresponds to this in the theory of elastici- 
ty. 

2. Let us use ellipsoidal coordinates which are roots of Equation 

(2.1) 
Here h> O>p> - ba> v > - a2. For brevity, let US introduce 

the functions 

Y! (s) = (a" + S) (ba + s) s, Y (s) @ (s) = (s - h) (s - p) (s-v) (2.2) 
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Formulas for the transformation to Cartesian coordinates and Lame coef- 

ficients are 

(The unwritten formulas are obtained by a circular permutation, where 

2 = 0)‘ In these coordinates the Laplace operator is 

Therefore 

n*v= 2 
4y 0”) 

A p ” (h-IQ&--Y) , % 

The solution of Equation n*V dependent only on X and vanishing at 

infinity is easily found 
m 

V=C w (s) = sky (s) (2.7) 

Another more general solution is hence obtained by variation of the limits 

of integration. Beforehand we note that 

(V(D)% = $ ) 
&l&-2+. 

Now, let g(t) be a twice differentiable function everywhere in the seg- 

ment [O,l] with finite values of the one-sided derivatives at the boundary 

points. After slight manipulation we obtain the following formula for the 

operator A* on the function g(a): 

a*g (0) = 4Jfiqq-$x& 

The form of this function suggests taking the following expression which 

satisfies the condition at infinity: 

as a possible solution and, therefore, ~(1) is a solution of the 

(2.7). Differentiating we obtain 

W 
aZ= 

co itg(fB) as s 
A 

~~)+gma*? *. . 

av 
yjg= 

cgsg(uq ds F ag (Q) I 
a=8 (kj 

i 
agPyro(,)--az - - r=)l V~ 2 + g to) asa 

form of 

(2.10) 
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But ag (@I 
--ST I 8=k 

=-g’(O)g$= -4g’(O)%, . . . 
Remarking that A%(h) = 0 and '& 2 $ . . . = j,upon adding we 

have 

(2.11) 

identically because of (2.8). Thus the function (2.9) will actually be a 

solution. The last term in Expression (2.1) for m(s) vanishes cn the 

boundary h = 0 or p = 0. Hence, 
(2.12) 

a-_0 within the disk 

outside the disk 

If g(t) is a polynomial, then V(x, v, 0) is also a polynomial (with 

dependent coefficients) within the disk. Computing the derivatives, we ob- 

(h 0) = g’ (4) (2.13) 

Here 9, is the result of the substitution s = X5-l in Expression (2.1) 

It is clear that on the boundary outside the disk, p = 0, Expression 

(2.13) vanishes. Within the disk X = 0, we have 

f@-& =+k !&!%$f \+@(I _ ,)'/.(k-l)dU+~~tlh(k-l) (2.14) 
0 

Here 

~=.!.!=1-$~ (2.15) 

Hence, it has been proved that an elliptical distribution of the source 

density corresponds to the solution (2.10) of Equation (1.4). Moreover, it 

is seen that the density contains a component which is irregular on the 

boundary of the ellipse if g(0) # 0. There is just one component if 

r(x,v) = c. Then 

f (.& y) = _& (1- $ - Jt)‘” (k-1) ) -’ (2.16) 

This result is presented in [3]. It has a somewhat different form in [4], 

to which it may be reduced if the'substitution s = t-l is made in the inte- 

gral of [2.16] and then contour integration is used. 
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Then we obtain as in 1'13 
(2.17) 

f (2, y) = f cos p 1- f - -$- zy(k-l)[[ (COzcp I si~fp)‘i.(K-l)dF)-L 

0 

Furthermore, using the notation f(x, y) = q(t) in the caze under consider- 

atlon, let us substitute ut = s in the integral. Then 
t 

(2AS) 

Let us introduce a mass of sources Q . In our case 

For a known function q(t) the dependence (2.18) is the Abel equation 

for h(t) or, better, directly for g(t) . By the customary means (appli- 

cation of the Dirichlet formula), we obtain 

t 

g (t) = ab ,os~~ q (s) (t - spZfl+*)ds 
0 

(2.20) 

This formula completely solves the problem of determining a function by 

means of a given source density a(t) In the particular case wherl 

(2.21) 

we have 
.rn 

g (t) = ab cos *+ 2 c, I- P/a (1 - k)) r (5% (2n + i + k)) f” 
f (fi + 1) (2.22) 

n=a 
As has been mentioned above, the dependences be-trween the coefficients of 

the polynomial restrict the application of these results to the Dirichlet 
problem. This method permits its solution only when F(x, y)= C -Ax-By 
(using differentiation with respect to .lc, M). It is also possible to solve 
a problem analogous to the problem of an elastic contact, i.e. to determine 
the size of an ellipse from the condition of finite pressure on its boundary. 
But this does not solve the problem of a nonplanar rigid stamp even in the 
case of a paraboloid. 

3. The general, although preliminary approach to the formulated problem 

is obtained by separation of variable; in (2.6). As a result, a single 

differential Equation 

is obtain<d for the functions A(k), M(U) and N(v) whose product forms the 

rolution. 

Here s = )isl_l,v in the different ranges of variation of 8 . For eon- 

venience, one of the separation constants is written as nfn + 1 + k). A 
comparison with the Heun equation in canonic form [i'] 
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where g is an accessory parameter; shows that Equation (3.1) belongs to 

this type , having the exponents (0, 3) in the strips S=_a2 ,s =--bb" ; 

(0, + - $k) in the strip s = 0 and (-&n, $n i- 4 + *k) at the infinitely 

distant point normal for this equation. Precisely this circumstance, which 

is due to the fact that the constant is y=O in the operator n*,eliminates 

the principal difficulty. By comparison with the Lam6 equation, Equation 

(3.1) has no unlformizing substitution since the integral 

does not admit of a unique inversion. However, in the real domain this does 

not imply difficulties In principle and the transcendental coordinates <,n,c 

may be introduced exactly as is done for the Lam6 equation. These parameters 

are not used herein. Here.it is expedient to transform from the symmetric 

form of the X,~,V coordinates, convenient for the development of the ana- 

lytic theory of the Lame equation, to the nonsymmetric p,n,v coordinates by 

making the substitution S + cz2= U2. Equation (2.1) then becomes 

(in [8] the quantities C, a are denoted by h, k). The transformation 

formulas to Cartesian Coordinates and Lame coefficients are 

?f= 

On the disk 

(pa- @(pa-+) 

Hp = ((P'-aa") 1 

'1. 

. 

’ H,= (3.4) 

Equation (3.1) is transformed to 

(02 - 9) (a” - c”) @+fg + u [ (02 - a”) + (1 + Ii) (62 - c”) I dg + 
+ [q - n (n + 1 + k)a21 E = 0 (3.6) 

The indices relative to the infinitely ‘distant point for this eqUatiOn 

are (- n,n +l+ k) and Equation (2.6) admits of a polynomial solution for 

the characteristic values of the parameter q 
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E = K (u) + i; u*ua-28 

a=0 
and a quasi-polynomial 

(3.7) 

b,p+zs 

8=0 
(r = [q]) (3.8) 

Substitution of (3.7) into (3.6) leads to the following recursion system 
for the Coefficients 

2 (s + 1) (Zn + 2s - 1.+ k) a,,, = (q - (n - 2s) (n - 2s - 1) @ - 

- (n - 2s) f”} ai + (n - 2s + 2) (n - 2s + 1) e’a*-, (3.9) 

CP = a2 + 9, e4 = a2c2, f” = tP + kc2 

Putting 'S-r + 1, ar+l=O, we obtain LE,+~=O and then all the (L', = O 

for s> r . Equating the'determinant of the homogeneous system for the 

remaining s to zero, we obtain an equation of r f 1 degree in p . 

Hence, $z + 1 functions K(u) are obtained if' n is even and *(n+ 1) 

of the same functions if n is odd (absence of multiple roots is assumed, 

as.actually occurs). In exactly the same manner for the coefficients bS , 
the substitution of (3.8) into (3.6) leads to the system 

2 (s + 1) (2n - 2s - 1 + k) b,+l = {&-- (n - 2s - 1) (n - 2s - 2) X 
x d2 - (n - 2~ - 1) g2) b, - (n - 2s + lj (n - 24 e4L1 (3.40) 

g2 = 3a2+(1 -k) c2, q1 = q - a2 

Repeating the previous reasoning, we find that the characteristic equa- 

tion for q is of SQ degree if n is even and of h(n + 1) degree if n 

Is odd. Hence, the total number of functions of both kinds X,L of degree 

n is n+l. The products K(n)K(v) and AL are polynomials in 

-r,@ which have the same degree. The total number of functions of degree 

from 0 to n, inclusively, is +$(n + l)(n t Z), i.e. agrees with the number 

of independent elements of the basis of 72th degree polynomials in x,y . 
Under the condition of linear independence of the products E(p)E(v), they 

can be represented by a linear combination of arbitrary nth degree polynomi- 

als in x,y . But exactly as is done In the theory of ellipsoidal functions 

[8], it is easy to prove the orthogonality of these products, hence, their 

linear depencence indeed follows. Let E,,' denote a function of‘ degree n 

which belongs to the eigenvalue p," , a root of the characteristic nth 

degree equation. The Wronskian 

(3.11) 

of functions of the same kind will be polynomial in both cases. It will 

satisfy the first order differential Equation 

$A(a)H} = e 
[n(n+f+k)-n’(n’+i+k)]@-(q,‘--q,,?’) 

1/~d-cy(I+Pp 
ens s&a (3.12) 
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where 

A(a) = 1 aa - Ca (11 , o=a _ aa [%(l+k) 
t e = sign (a* - a’) (a” - 8) 

Integrating this equality over the Intervals C < 6 < U and -c<d\<c, 

at whose endpoints A(u) = 0, we obtain the relations 

[n (n + 1 + k) - n’ (n’ + 1 -I- k)li 

a E,,” (~1 En: (IL) dp = (St - qnp’) 1 I/(p _ cs) taz _ p)l-k 

[n (n + 1 +k) - n’ (n’ + 1 + k)].[ 

’ E,,*(v) E,!’ (v) dv 
= 

(%t-- qn”) s; J/(s _ q) (az _ ,sy-k 

(3.13) 

Cross-multiplying these equalities and substractlng, we find that the 

Integral 
a 

J*. a’= 
’ (p’ - vz) E,,” (p) E,,’ (v) E,:’ (p) E,,:’ (v) dp dv 

?a, II’ 
(p - c’) (CS - v’) (da - pp(a~ - +)I” 

(3.14) 

vanishes if n-n' and (I," = q,,!' simultaneously. But because the single 

Integrals (3.13) vanish for n =n' and Q,,*#Q,,~'or n#n' and q; = q,!', 

the double integral (3+4) Is al% zero In these cases. 

Thus, the Integral (3.14) Is not zero only when n = n' and q,,' = q,,? 

simultaneously. This integral is positive because pa > va 

Therefore, there is a real normalization of the products En* (p)En* (Y) 
such that these products from an orthonormal system. Transforming to Carte- 

sian coordinates by means of (3.5) and using the notation 

we obtain 

P,,"(z, Y) J',,% Y) dzdy 
0 

(1 _ %a 1 aa _ Ye / ba)%(l-k) ‘= (3.15) 

The Integral Is taken over the area of the ellipse 

1 - x8 I ua - y2 /ba > 0. 

Thus the pqlynpmlals P.~(x,Y) form an orthogonal system with weight 

(1 - i/a2 - ~2 / b3"(k-1) In the area of the ellipse. They thereby differ 

from the V.A. Steklov polynomials [g] which form an orthogonal system with. 

weight (1 - xaa/ aa - y2/b2)= on the area of the ellipse, whereby Q > 0. 

The remaining propositions on the theory of the functions 2.' (p) are not 
developed here. This theory, as is seen, duplicates the theory of ellip- . 
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soidal functions with insignificant changes, hence, the proof that all the 
eigenvalues are real and different and that the roots of the functions E;(p) 
are enclosed in the interval (-a, a), is also omitted. 

Let us note only that the evaluation of the integral J,,$f which is needed 
for the normalization, reduces to just rational operations, exactly as in 
the theory of ellipsoidal functions [8] because the integrals 

K, = c ,ir IS2 _ $ I-% f &? - a2 ~'lnW-~)& (r a natural number) 

taken vvlthin the limits (C,a) or (O,c:, are expressed by linear combinations 
of the integrals X0, ~~ [whi;tn;;e identical for both ranges of integration) 
via the reduction formulas, the integral (3.14) equals the product 
of rational functions of a, o an; the integral 

ac 
@ia - v”) dpdv 

1/($ - 3) (9 - va) (a2 - $4)1-k (g - va)l-k 

Transforming to Cartesian coordinates by means of (3.5), we remark that 
the integral is evaluated by elementary means and equals n(1+ k)-1(&)x. 

4, Let us now deduce the integral equation for the products 

p," (G 9) = ER @) E," ($ 

by using Formulas (1.5) and (1.6). 

Let us introduce a function of the second kind ~,~(p) . This is the 

second solution of Equation (3.6) in the Interval Q > P(where the first 

solution is E, "(p) ) subject to condition F," (p) - 0 as p - - . Evidently 
the solution is expressed by FormuLa,(constant factor is omitted) 

F:(p) = E,B (f)r " 
p [%(p)laIS. (a) 

Let V (z, y,O) =.PI(z, 9) on the disk. The function V(X,Y,I), a 

solution of Equation (1.4), is determined outside the disk by Formula 

V(z, Y, 4 = z E,” (p) E: ($ 
n 

Evaluating the derivative aV/az by means of (3.4), we find 

av V(P2 - a')(@ --2)(la2- v2) (p2 - c*)p 

aZ= ava2-c2 { (p2--2)(p2- 9,s - 

Hence 

W - 6 P av (@ - 9) v a - 
(Pa--@) W---) aE*- (pS-- v*)(P- V2)ity 7 

lim zkg = lim k 2 P bz - @) I/b” - aa) (~9 - r-1B) (a2 - v*} av -= 
D-M ay'o*--CB(p2-~2)(p2--V2) aP 

= a- k (aa 

t 

-II2) (aa - v*) 
(al - 3) 1 'h(k-l) lim (P2 _ a2)'/a(1+W$. 

P-W 

(4.3) 

(4.4) 
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(4.5) 

(4.6) 

then 

hraluating the source density by means of (1.6), we obtain in Cartesian 

coordinates 

,f ($, $1 = (1 - xz I aa - Y’l W”‘k-l’ p; (%, g 
2nabEn* (a) Fd (a) 

(4.7) 

&pressing the value ~(2, y, 0) in terms of f (5, Y), we obtain 

P,’ (2, y) = 1 ss {l - Es j UZ - q= f b!$~‘(k-l) P,’ (E, q) dg dq 

2nabE,,’ (a) F,,’ (a) [(z - &)B + (y - q)‘]*‘*(l+k) 

This is indeed the desired Integral equation. On the basis of the general 

theory, it Is now possible to write at once the series expansion of r-lmk 

in products of the eigenfunctions. But there is no need for this expansion. 

More important is the correspondence between the value of V(Z,SJ,O)= 
= Pms(s, 3) and y(x,Y) by means of (4.7). If ~(x,y,Cf = F(x,y) is an 

arbitrary nth degree polynomial, then by expanding it in the products 

Pm%, y) = Em" 6) Em* (y) and comparing the density ~','(x,p) to each 

of the members of the expansion by means of (4.7), we will. find that 

f (5, Y) = fo (x9 Y) + f1 (5, Y) + * * * + f, (G ?A equals the product of 

a polynomial of the same degree by the function (1 - 5' / Ua - ZJa /ba)"'(k-l). 

The theorem inverse to the theorem given in ['cl is thereby proved, i.e. it 

has,been proved that if a pol~omial is on the left-hand Side of Equation 

(O.l), then the solution of the equation is a polynomial of the same degree, 

but with other coefficients, mult?lplied by f* - f / cb2 - ya/@*h(k-l’. 

This theorem is an analog of a theorem of Galln [lo] on the pressure Of 
am elliptical planform stamp on an elastic half-space. The theorem of [4] 
and this theorem, together, yield a basic for the application of the method 
of undetermined coefficients to the solution of Equation (0.1): If evalu- 
ations of the function TJ(x,~) outside the limits of the ellipse are not 
required, then calculation according to [4] yield the solution by simpler 
means than the evaluation of the expansion of Y(x,Y,O) in P,* (x,14) . 

&en the evaluation of m(x,y) outside the boundaries of the ellipse is 
necessary, ‘the formulas of Sections 3 and 4 herein yield a finite algorithm 
of the solution (under the assumption that w(x,Y) is a polynomial). 

5. Let us derive formulas connecting the parameters of rigid displace- 

ment of a stamp with loading Q and moments M,,M, acting on the stamp 
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Let ur assume that the :;ettlinG W(X,Y) is represented by Expression 

w (5, Il) = d + (xx + py + w (5, y) W (3, y) = 0 (pa)) (5.2) 

The values of thu potential .F(x,y,O) differ from W(X,Y) by the constant 

factup K (stiffness of the sole) which has the [force (length)-*-k J dirrlcn- 

v (2, y, 0) = Kw (x7 ?/I (5.3) 
In general, X is an empiric coefficient. For a homogeneous elastic 

half-space fi: = (~'&)/(1 - Y2). 

Expanding w(x,~) and ffx,~) in series of eigenfunctions Pns (x,y), 

we have in conformity with (4.4) 
03 n+1 

(5.4) 

As a consequence of the orthogonality of the family pns (x,y) we obtain 

ss f (2, y) Pn” (5, y) dxdy = 
K US dx dy 

= 2nabEnU (a) F,@(a) * 
w (27 Y) PC (29 Y) 

(1 
_ ,z / ,a _ g / ~z)‘/d~-k) : 

(integrals taken over the area of the ellipse) 

Let US apply this formula to lower degree polynomials 

P,” (x, $4 = 1, PI0 fs, y) = xr P, 1 (2, $4) = Y , 

We obtain 

Q = K 
W(& ?I)dz:d!/ 

ZnabE,” (a) Fe”(a) 11 (1 _zz/&.21ajbz)%(~-k) 

M,= 
.K 

&cab&’ (a) PI’ (a) c\ 
?/W (2, ?/) ch d?! 

1. * (1_-Z/a2_yZ/ba)‘~~~l-‘) 

(5.5)’ 

(5-Q 

(5.7) 

(5.3) 

Keeping In mind the corresponding results of Galin inthethree-dlmensicnti 

problem of the theory of elasticity [lo], let u:: u-e hi.: notation for* the 

coefficients in front of the integrals in the above tor,mula- 

A = R [23&E;" (n) FJO (a)]-1, R = K i2nabE11(a) F,f (u)l-’ 

C = K [2nabE,” (a) F,” (a)]-l (5.9) 
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Moreover, let us use the notatio? 

J2 = l$ ya (I- $ - g)*h(k-l’ dx dy = ($ +‘;; + k) (5.10) 

’ J 0= 
CM . l 

1 _ $ - g)“s(k-l) & f&j = _g 

Inserting Expressions (5.4) into Formulas (5.6) to (5.8) and solving the 

obtained equations for &,a,% we find 

(5.11) 

(5.12) 

(5.13) 

These formulas which express the parameters of rigid displacement as a 

function of the force Q and the moments M,,frl,, have the same form as the 

corresponding formulas of Galin, but the values of the constants are differ- 

ent here and the degree of the weight function in the lntegrand is here 

*(k - 1) instead of -* . Let us express the coefficients A,B,C explicitly 

in terms of integrals. 

Returning to Formula (&.I.), we note that the product E,,'(U) F,'(a) is 

independent of the constant factor in the expression for E,'(p) . 

In this connection, let us assume for simplicity 

zoo (P) = 1, El0 (PI =. P, E,’ (p) =I/p* - c% 

Substitution of these functions into (4.1) yields 

(5.14) 

(5.15) 

Making the change of variable a = at and introducing the results into 

(5.9), we obtain 

Where the Jlot II and Jla are nondimensional coefficients expressed via the 

integrals 
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(5.16) 

92= r fra-es)I/(tadtea)(la-~l)L+k 
Here e = o/a is the eccentricity of the ellipse. For k = 0 and 

K =nW(i -9) F ormulas (5.15), (5.16) and (5.10) transform into formalas 

(9.35) of the monograph [lo]. If the stamp is a plane, i.e. W = 0, then 

Formulas (5.11) to (5.13) are simplified. Taking into account (5.10) and 

(5.15) we obtain in this case 

In order to have the possibility of applying these results to estimating 
the displacement 6 of a flat stamp of arbitrary planform, it is necessary 
to extend the maximum principle to the function v , the solution of Equation 
A*V=O which it is expedient to consider in the whole space with the slit 
along the plane domain z = 0 occupied by sources. In this space the func- 
tion V defined by (1.5) evidently has no local extrema for .? # 0 . But 
under the condition _&,r/) > 0, the function Y has no local extrema also 
for 2 = 0 * This can be seen by evaluating the second derivatives at the 
point (x0 9~o ,O). The characteristic equation of t;he matrix of the second 
derivatives has two negative and one positive root under this condition. 
Therefore, local extrema are missing at these points also. From this same 
analysis it foll.ows that the surface g = Y(x,y,O) consists of hyperbolic 
points outside the cut. 

As applied to a flat stamp, this means that if the stamp is moved without 
having any deflection (a = B = 0), then &x,y) < 6 everywhere beyond the 
stamp. Let S denote the domain under the stamp and E the interior of 
an ellipse such that Ez, S. Then 

w=8 on S; w = g&y) <a on E-S 

Now, applying Formula (5.6) to the domain E , we find 

(5.18) 

Kc@ 
Q<cJ&= (I+ k)g, ’ (5.19) 

In order to obtain an exact upper bound for Q , evidently that one of 
all the ellipses E3S should be chosen on which the ratio al+"/$O achieves 
the exact lower bound. 

6. Let us now consider the limit case when the elliptical domair '.&omes 
circular and the p,v,v coordinate system degenerates into the n,%,v CO- 
ordinate system of an oblate spheroid 

x=rcoso), y = rsinrp, zf ir=uti (q-l-i81 (6.Q 

In this passage to the limit on the vanishing section o=v, O$V<G 
c - 0 Equation (3.6) yields d2E + maE = o 

iiip 
I q = maa* (6.2) 

and the functions E(v) transform in i 83 into cos mtp, sin mq, . On the 
remaining sections we have 

(54 - i) GsdtE -+ % [(Z + k) bZ - 11 '$ + Ima - n( R + 1 + M PIE =O 
(6.3) 

f = CoSh q for 5>c b. = sine for 0<5<1 (5 = 0 I a) 
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Equations (6.2) and (6.3) may be obtained directly also by separation of 
Equation n*V= 0 in the n,e,m coordinates, which yields 

The substitutions g=coshq, c=sin9 lead to (6.3). But for an isolated 
analysis, the relation to tne general theory presented above is touched upon. 
The passage to the limit makes clear why the results for a circular domain 
are expressed in comparatively simple hypergeometric functions while the 
other case of degeneration (infinite strip, elliptic cylindrical coordinate 
system) requires involvement with Mathieu functions. In the first confluent 
case a decrease in the number of singular points in the Heun equation (3.1) 
occurs and the infinitely distant point remains regular; in the second case 
we obtain an irregular point at infinity even when 
problem of the theory of elasticity for half-space). 

k = 0 and nil = 0 (in the 

The basic results for the circular domain are known. But they have been 
obtained without relation to the theory of equations of Fuchs type, by means 
of direct, sometimes very complicated calculations [12], by methods which 
are very diverse in their conceptual bases. Let us show here how these re- 
sults may be obtained on the basis of the general theory developed. 

Let us note at once that c = 0 implies directly the transformation of 
the systems of three-term equations (3.10) and (3.11) Into a system of two- 
term equations fol, Lhe coefficients of the hypergeometric series. Equation 
(6.3) is reduced to 

dE_+ma-n~fn-+l+k)~E=O 
dU 4u* (u - 1) 

(6.5) 

by the substitution 5 = u2 . 
Evaluating the exponents, we find that the scheme of solving this equa- 

tion will be [13] 

E=P 
{ 

9, 1, 

‘l*m, 0, --=Lh u 
- ‘f* m, ‘,s - l&k, ‘/n(n-+ t-k), 1 

(6.6) 

Performing the reduction to the standard scheme of the hypergeometric 
equation we obtain 

9, 1, =J, 
E;= uVamp 

a = ‘Vn (m - n) 

0, 0, a, b =’ :(m + n + 1 -I- k) (6.7) 
1 - c, c- a-b, b, c-m+1 

Limiting ourselves to the case of analytic P(x,y,O), we note that n and 
m are non-negative integers, n >,m and the difference n -m is an even 
number. Equation (6.5) then has the polynomial solution 

En” = u”~* F (‘in (m - n), ‘ia (m -k n + 1 + k), m + 1; u) (6J9 

To the accuracy of a constant factor the function F agrees with the 
Jacobi polynomial 

Pn(u*p) (iv) wbcre a = m, fJ = ‘/p (k - f), x=l - 2u" 

as follows from the formulas representing Jacobi polynomials by means of 
hypergeometric functions [7] and [l&J. Thus 

E,* (sin9) = (sin e)~~,~~~~-l))(~os ze) (6.9) 
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can be taken as the normal form of the solution. 

Since Equation (1.4) transforms into the equation AV = 0 for k = 0 
the functions (6.9$ transform into the associated Legendre functions Pm 
for -k = 0 . 4 This is easily verifled by applying Theorem (4.1) from [l 

et&B) 
] 

and the formula for differentiating Jacobi polynomials. 

From the weight formula of the Jacobi polynomials IQ(Z) = (I- d”(i $_ dp 
we find the weight of the functions EC by simple transvormatlon 

These formulas are easily verified directly by means of Equations (6.3) 
and (6.4). The above is sufficient for the solution of the Dirichlet prob- 
lem. By taking the normal solution in the form 

V 
F,?j!ch rl) 

n.m = 
F,,” (1) 

Enrn (sin 0) sin cos mcp (6.11) 

a computation may be made which is analogous to that made in Section 4, and 
the eigenvalues may be found for the functions E,"(r/a) of the integral 
equation a 2x 

F, (4 = ( sf (s) ds [ cos mwdo 1 
4 
0 

o tr2+ sz _ zrs cos #~(l+k) 
(6.12) 

which is obtained from (0.1) by expanding the functions in Fourier series in 
cos m 

% 
and 

from( .12) bys~%$t'factor 
Let us note that the equation for E,*(r/a) differs 

(1 _ 8z / az)'lr(k-l) 

Hence, it has been shown that the problem for the circular domain is in- 
cluded in the more general theory developed in Sections 1 to 4. The eigen- 
values for the functions Enm are found in [12]. 

7. Let us consider a generalization of equation (6.12) which is associ- 
ated with the fact that its kernel is represented by different hypergeomet- 
ric functions on the sections 0 < a c r and r c s <: a of the interval 
of integration, namely [7] 

2x 

s cos nodo 2d (n + ‘i2 (1 + 4) x 

n (39 + y* - 2$y UXj ,)'/r(l+r) = r (I/* (1 + 4 r (n + 1) 
Y 

x ~~y-*+-~ F 1-i-r Ii-r 
R + 2, --+ 

if w2< y2 . For x2 > y2 the letters x and y exchange places. (It is 
here convenient to change the special notations of the preceding sections 
to general notations). Representation of (7.1) by an Euler integral was 
used in [4] to obtain the solution in closed form . The same function may 
be represented as 

21-rr (‘/a (I - d) nv-/, ($ t) J 

r (V2 (1 + 4) s 7l 
(yt) i’ & 

0 

(7.2) 

Such a representation has been used in [ll] and [12] for the same purpose. 
The solution is then obtained either by applying the Barnes integrals [ll] 
or by the reduction to a Wiener-Hopf equation with the subsequent use of the 
method of M.G. Krein [12]. A natural generalization of the form of the ker- 
nel (7.2) Is the d&continuous Weber-Schafheitlin integral [i'] 

m 

Wpf7 (I, Y) = * s Jp (xt) J’, (yt) tP*dt = 2rzpy-l-r-p r (l/a (1 + r + P 6 PI) 

r (% (1 - r + q - PII r (1 + PI ’ 
0 

XF l+r+p+q 

( 2 s 
Ifr;p-q; i+p;,+ (7.3) 

x2 < Ye, Re(p+q+r-l-~)>OO, Rer<f 
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The second formula is obtained by permutation of the letters (x,p) z (I/,*). 
An equation of the form 

f (4 = u Wp$’ (5, Y) cp (Y) dy s (7.4) 
0 

was considered in [12] from the viewpoint of the Wiener-Hopf and the Kreln 
methods. But it is known that any equation of Wiener-Hopf type may be re- 
duced to two duplicate Volterra equations. This 'Copson method" seems very 
simple and powerful in a number of cases and has been successfully used by 
various authors [ 153, including the present author in [4] and other works. 
In this case this method leads to the inversion formula 

cp (4 = - 
- p-rz9 

r (1/a (1 + r + p + 4)) r P/2 (1 + r + q - PI) x t 
p-r-P-9 d 

s 

a~*+~ f (IL) du 
(t8 *_ z2)%0--r+q--P) dt o (ta _ ,n)%(i-r+p-a) dt (7.5) 

which holds under the following sufficient conditions: (1) RerE K4 Il.,, 
(2) jRe@- q) I<Re(i - d; (3) the product Z1+P~~~)e~~p~~~tegr~bl=eOin the 
whole segment LO,aJ; if if has a singularity at > then 
it is not higher than O(I-'), 0 < a < 1 . 

Note. By integration by parts (7.5) is reduced to a form which may 
be more convenient since the singularity at x = a will be explicitly ISO- 
lated 

p-rz9+1 

'p (4 = r (YP (1 + r + p $ 4)) r p/1 (1 -J- r + q -p)) I 

'p (4 

- ($ _ #) Vdl-r+q-P) 

where 

(7.6) 

t 
d 

9 (t) = t-P-q+ dt 
s 

u:+~ f (u) du 
o (ts _ ,%)‘/~1-1-r+~) 

Proof. Let us represent the functions F in (7.3) by the Euler 
integrals 

P (a, b, c; z) = r (4 
c 
1 p-l (1 _ p-'(i 

r (a) r (C - a) . . 
- t~)-~ dt 

0 
We have for the function in the first fOn'mla Of (7.3) 

r u + 14 
F = r Ph (1 + r + q + ~1) r (% (1 f P - q - 4) ’ 

1 

X 
s 

tVd-l+q+P+r) (1 _ t)%(-l+P-q-r) 1 _ t _ 

( 

.g Vr(-l+9-P-r)dt 

ti 1 
(7.7) 

0 

Because of the restrictions (1) and (2) Imposed on the parameters, such 
a representation Is admissible. Let us substitute t = +/CC? Into (7.7). 
Inserting the result into (7.3), we obtain 

(7.8) 
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Performing the same calculation with the second formula of (7.3) we obtain 
an analogous result with the sole difference that the letters x and P 
have exchanged places with the letters g and q 

Both results may be written as single Formula 

wpy b, Y) = 
p+r2-Py-Q 

r C/r (1 - r + P - 4) r (V, (1 - 7 -e q -A) x 

m1xux.u) 
tP+q+rdt 

X 
s 
0 

(.$a _ p)'Ml+r+P-P)(~ _ tq'/so+"w) 
(7.9) 

Let us Introduce the notation (7.10) 

)P (Y) = Y-P (Yh g (2) = 2-l-‘. r i - r ; p - Q ) r (1 + r $z 4 - P ) zPf (+) 
( 

Then Equation (7.4) becomes 

0 
o (;” _ ta)%(l+r+q-P) (9 _ p)V4l+r+p-u) + 

a x 
tP+q+r dt 

(9 _ tapdi+w-p) tya _ te)Vr(i+r+P-9) = g(4 (7.11) 

Lx 0 

In connection with the restrictions Imposed on the parameters, a change 
In the order of Integration is admissible In both components. Performing 
this change (by the Dirichlet formula In the first term) and combining the 
results, we reduce (7.4) to 

x a 

0 (zp _ t~)'/*(l+'+Q-P) dt s pq+r 

5 (I, (Y) dy 
*(d-P) 

a/,(i+r+w) = g tz) 
(7.12) 

The problem has thereby been reduced to the double solution of Abel equa- 
tions. Let us recall that the Abel equation 

: colt1 dt 

with continuous right-hand side has the unique solution 
x 

cp (5) = 
2 sin mn: d 

s 
Y! (Y) dy 

¶I dz o tx% - yap- 

In the case 0 < m < 1 (under the condition that the integral converges at 
the lower limit). For m -c 0 the solution exists only under additional 
restrictions on the right-hand side. 
unique solvability of Equation (7.12). 

Conditions (l), (2) and (3) guarantee 
Let us note that equivalence was 

not disturbed anywhere during the reduction of (7.4) to (7.12). Solving the 
Abel equations successively, we find 

(7.13) 
0 t 

0 (t) = s 9 (Y) dy 
* yya _ p)'ll(l+~+P-q) = t-p-q-r 2 -y cos 

(r$.q-p)fi d 
2 dt (p _ U8)vAl-r+P-9) 5 ug (4 du 

0 

a 

~(x)=-+3s (r+P2-B)IT _$ s to (t) de 
r (p _ ~)'/*b-~+a-P) 

(7.14) 
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Combining these results and returning to the previous notations (7.10), 
we obtain (7.5) after simplifying the factor before the integral, q.e.d. 

In conclusion, let us recall that the success of applying the apparatus 
of analytical theory of differential equations to (0.1) Is due to the special 
form of the kernel (Section 1). This circumstance evidently should be taken 
Into account In constructing mathematical models of a linearly deformable 
foundation. 
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