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An effective solution of the integral Equation

w (e, = \| & WK () dhn = VE—TFFG—1 01

1s constructed herein for an elliptic domain in the case of the power kernel
K (r) = Cpr~1-k Equation (0.1) is hence related %o the Dirichlet problem for

a cervaln second order differential operator. Such a method permits finding
the eigenfunctions of Equation (0.1) which are kindred to Lamé ellipsoidal
functions and when w(x,y) 1s a polynomial permlts the calculation of p(x,y)
as well as the contlnuation of w(x,y) outside the limits of the domain of
integration. In passing, formulas are obtained for the evaluation of certaln
integrals analogous to potentials and other results are found which have
analogs in Newton potential theory and Lamé ellipsoidal functions.

The connection between the settling w(x,y) and the pressure P(x,yz in
the theory of a linearly deformable foundation is taken in the form of 0.1)
where the kernel K(r) 1s a monotonely decreasing furction, K(«) = 0, has
a singularity of not higher than the second order at the point r 0 (in
order to insure convergence of the integral).

No special assumptions are made in this theory relative to the nature of
the elastic deformation of the underlying space or layer. For a homogeneous
elastic half-space K (r) = Cr-1,

Other forms of the dependence K{(r), discussed in [1], are possible for
inhomogeneities and other devlations from the hvoothesis of an elastic half-
space. In partlcular, a kernel of the form K(r) = Cr-1"% 1s mentioned.
This latter case is usually interpreted as corresponding to the growth in
the modulus of elasticity with depth in proportion to et (k:>(» However,
such an interpretetion requires special assumptions [2].

Attention was turned 1n [3] to the fact that the kernel Cr'b*, where
r=VeE—EtrF+@—mr+ 2
is cancelled by the operator
A* = A+ ket O (0.2)

9z

The connectlon with the Dirichlet problem for thils operator was used to
solve (0.1) in the case of 1w = const An effective solution of (0.1) was
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given in [4] for the case of w(x,y) . a polynomial, based on the use of con-
tour integration. However, this method does not permit the calculation of
the value of w(x,y) outside the boundaries of the domain of Integration,

Moreover, the theorem proved in [4] that wu{x,y) 1s & polynomial if
p(x,y) has the form of a polynomial multiplied by the expression

(1— 22/ a% — y2/b2)/stk-D)

is not accompanied by the inverse theorem and the applicability of the method
of undetermined coefficlents always when p{x,y) 1s a polynomial thereby
remains unproved.

This inadequacy is removed herein, where a proof of this inverse theorem
1s presented at the end of section 4,

1. The connection between Equation (0.1) and the Dirichlet problem
broadens the possibillty of an approach to the solution of this equation in
all cases when the differential operator admits of separation of variables.
However, not every kernel admits of such a possibility. Let us clarify when
this will hold. Components of the Laplaclan A and multiplication by the
constant B8 enter naturally into the operator A* which cancels the kernel
K(r), r== V(:C— E)? -+ (y—— n)2 4+ 2® Non-positive sign of B, B = — v® 1is
required for X(r) to be monotone. Only 3/3z of the first derivatives may
enter and, with the factor kz™* besides, since JK / 8z = zr 1 K (r).
Therefore, the operator has the form

At=A+E L (1.1)

and Equatlion

K'()+2HK () —rK() =0 (1.2)

is obtained for K(r).

(The constant factor % may not be replaced by the function o{(r) since
the expression A* does not contain the parameters § and n ).

Then the Macdonald functions (with a supplementary power factor)

K () = CreE y, . (1) (1.3)

are possible kernels.

When vy = 0, the power function isK (r} = Cr-1-¥ As regards the constant
#, keeping in mind the singularity of the kernel at 7 = 0 , we must have
k> — 1 ; for convergence of the integral #< 1 is necessary. Thus —1< k<1
for all y.

In case y # O the construction of normal solutions encounters consider-
able difficulties associated with the necessity for a numerical solution of
transcendental equations (in the form of an infinite-order determinant) from
which the characteristic values of the accessory parameters in the differ-
ential eguations obtained in the separation will be found.

In the y = 0 case this difficulty is absent and the theory is developed
more-or-less analogously to the theory of Newtonian potential for an ellip-
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tical disk. The analysis of the corresponding Dirichlet problem for [S* in
place of (0.1) broadens the sphere of application of the theory and makes
posslible the transfer of the results to other domains.

Let us consider Equation

Ao=to+ L2 =0 (—1<k<y) (1.4)

in the domain 2z > 0 and its solution in the form
_ f (E, m) d€ dy 1.5
v(z 9, 1) S§ [(z —E) + (g — m)F + 23 D (-9

in place of (0.1).

We assume the function f(g, n), the source density, to be continuous
almost everywhere on the boundary =z = O and fto satisfy the Lipschitz con-
dition.

It was proved in [3] that uner these assumptions

lim ¢ 2% = — 2nf (z, ) (1.6)

200 0z
Requirements for uniqueness of the solution arise in connection with (1.5)
and (1.6): it must be 0(p™* %) at infinity and the function z*a3v/3z should
have a finite limit almost everywhere for =z = O. Under these requirements,
the uniqueness 1s obtained by the customary method from the ldentity

(oot Gas = pzrarpdr + | # (ve) ar (1.7)
8 T T

applied to the spherical segment T
> h, 22+ + 2R (=0, R— o0)

Certain integrals of the form of (1.5) are evaluated in the next section
by reducing them to single integrals. It 1s proved that 1f the function
7{x, y) has the form of the product of gh(k-1) and a polynomial p(t), where
t = 1—z2/a® — y3/b2,’' then F(x, y) = V(x, y, 0) within a disk is a polynomi-
al. Simultaneously formulas are obtained which represent V{x, Ys z) every-
where outside the disk by single integrals (containing parameters), This
proposition is in itself an interesting analog of the known proposition on
the Newtonian potential of an ellipsold wilth an ellipsoidal distribution of
the attracting masses. Application of this result to the Dirichlet problem
is limited because of the dependences connecting the coefficients of the
polynomial F{x, y). Use of known pressure distributions in the solution
of contact problems [5] and [6] corresponds to thls in the theory of elastici-

ty.

2, Let us use ellipsoidal coordinates which are roots of Equation
722 y? 23
= ————— — - = 24
D (=1 al+s b3+ s s (2.4)
Here A > 0 > ® > — b? > v > — a®. For brevity, let us introduce

the functions

V()=(+ B+ 9s FT(OD()=(s—A)(s—p)(s—v) (2.2
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Formulas for the transformation to Cartesian coordinates and Lamé ccef-
ficients are

(a®+A) (a® -} (e + ) g A—p(A—v)
=gy =Ty (29)
(The unwritten formulas are obtained by a circular permutation, where
¢® = 0). 1In these coordinates the Laplace operator is
_ 4¥ (M) oV 1Y () ov
AV _;‘gv (A —p) (A — ) {6}»5 + 3 2 T 63.} (2.4)
while B
Yoy o :
6z =2z %}v}\.(h—u) A=~ % 29
Therefore

_ A% (\) v . A[YQ) , kv
8= 3 gy (aw trlver talwl @9

The solution of Equation A*V dependent only on X and vanishing at

infinity is easily found
o

ds
V=CS—__—, o (5) = stV (s) 2.7
Vo)
A

Another more general solution is hence obtained by variation of the limite

of integration. Beforehand we note that
do P ()
3 _ -7 o e P et
(Ver=="1, AD 2975

Now, let ¢{t) be a twice differentiable function everywhere in the seg-
ment [0,1] with finite values of the one-sided derivatives at the boundary
points. After slight manipulation we obtain the following formula for the
operator A¥ on the function g ((I)) :

d D
A% (@) = 4V (5 = L0 (2.8)
s Vol
The form of this function suggests taking the following expression which
satisfies the condition at infinity:

00

V.—_—Sg(cb)du(s)-gg( )V = (u(8)=§°?%_~,(-5) (2.9)

ES

as a possible solution and, therefore, u(x) 1s a soluticn of the form of
(2.7). Differentiating we obtain

av ¢ dg(d) Os g (0 )au A

rfam o on -
E’K=§oa’€(®) ds __ 3(®) N N a1

0z2 3 s Y (s 3z o\ Vo 6:: ox®
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But

g (D) ()2
s I g(o)a’-}-?«. — 4g’ (O)a;.""
Remarking that A*u (A) = 0 and g% % 4+ ... =1, uvpon adding we
have ©o
4g'(0)
A¥p =\ A*g (O =L == () 2.41
§ 8 ( )Vm(s)+ Vo w (2.41)

identically because of (2.8). Thus the function (2.9) will actually be a
solution. The last term in Expression (2.1) for &(s) vanishes on the

boundary XA = O or u = 0. Hence, (2 12)
v ¢ 2t g ds 6=0 within the disk
(%, 9,0 § g1 T d@ts b’+s) Voo g = ) outside the disk

If g{z) is a polynomial, then ¥{x, y, O} 1s also a polynomial {with
dependent coeffilclents) within the disk, Computing the derivatives, we ob-
tain

_ k =2 s (14Kk) E y (14+Kk) dt z* ﬂ_
“ 5 (a*b') S @)y VO+aB) A +56%) Vo) %
hty=¢®) (2.13)

Here &, 1s the result of the substitution s = X€~! in Expression (2.1)
for @(s)., i.e.
A — pE) (b —vE)
1 1 (g) ( E) (A + a%) (}.-{—b’i)
It is clear that on the boundary outside the disk, u = O, Expression
(2.13) vanishes. Within the disk A = 0, we have

/s (4R ¢ v, (k- 1, (k=
fan =502 F=S eyt — 0" au+ L0 044

2n Bz mab
[}
Here
ad x? i

Hence, it has been proved that an elliptical distribution of the scurce
density corresponds to the solution (2.10) of Equation (1.4%). Moreover, it
i1s seen that the density contains a component which is irregular on the
boundary of the ellipse 1f g{0) # 0. There is just one component if

.F{x,y} = ¢c. Then

—_° _1’_ __l’* s (k-1) ¢ ds -1
f(z, ) Tab (1 Py b’) Q V &% (a3 19 (b’+s)) (2.16)

This result is presented in [3]. It has a somewhat different form in [4],
to which 1t may be reduced if the ‘substitution s = ¢} is made in the inte-
gral of [2.16] and then contour integration 1s used.
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Then we obtain as in [4]

(2.17)

¢ nk x2 y2 Yy (k-1) / ‘(’f cos? sin? 1, (k-1) 4
j(x’ ?}) = ] cos “2‘“ (1—? —_— ?{) |\3 ( azq) + ba‘p) ] dq))
0

Furthermore, using the notation r{x, y) = g{z) in the casec under consider-
atlon, let us substitute u?t = s in the integral. Then
t

1 1 _ 0y 1 =
q(t)zmgh(s) (¢ — 5" ¢ g5 4- EO) g G0 (2.18)
0
Let us introduce a mass of sources ¢ . In our case
1 1
— - __2 R 2¢ (0)
0=\ (9 s nab§q(t)dt—i+k§(i 9% On(s) ds + 2D (2.19)

For a known function g¢(¢) the dependence (2.18) is the Abel eguation
for a(t) or, better, directly for ¢(t) . By the customary means (appli-
cation of the Dirichlet formula), we obtain

t

nk =t k
g(t) = ab cos-é—g g (s) (¢ — g1 gg (2.20
0
This formula completely solves the problem of determining a function by
means of a given source density ¢(t) In the particular case when
, Vs (k1) Ny, g"
g () = RN o (2.21)
n=o
we have

Tt 1)

As has been mentioned above, the dependences between the coefficients of
the polynomial restrict the application of these results to the Dirichlet
problem. This method permits its solution only when F(r, y) = C — Az — By
(using differentiation with respect to x, y). It is also possible to solve
a problem analogous to the problem of an elastic contact, i.e. to determine
the size of an ellipse from the condition of finite pressure on its boundary.
But this does not solve the problem of a nonplanar rigid stamp even in the
case of a paraboloid.

g () = ab COSEQIE'Z e Ps( =BT Ca@n+14 ) o (2.22)
n=0

3. The general, although preliminary approach to the formulated problem
is obtained by separation of variables in {(2.6). As a result, a single
differential Equation

@°E 1 1 1 14k
78_+—2—{a2+s+b2+s+ ;

s
is obtained for the functions a{r), #{u) and ¥(v) whose product forms the

solution.

df _ n(n+1+k)s—q
Vo = tarseas £ B

Here 8 = i,u,v in the different ranges of variation of s . For con-
venience, one of the separation constants 1s written as n{n + 1 + %). A
comparison with the Heun equation in canonic form [7]
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dw dw aBz —¢q
zl+{ +z~——1+z——a}dz+z(z——-1)(z——-a)’ w=0 (3.2)
+o6+e=1+4+a4B)

where ¢ 1s an accessory parameter; shows that Equation (3.1} belongs to
this type , having the exponents (0, %) in the strips g = — 2%, g = — b° ;
(0, # — %%) in the strip s = 0 and (—#%n, 3n+ § + #k) at the infinitely
distant point normal for this equation. Precisely this circumstance, which
1s due to the fact that the constant is y =0 1n the operator A*,eliminates
the princlpal difficulty. By comparison with the Lamé equation, Equation
(3.1) has no uniformizing substitution since the integral

S(az + S)”,’ (62 4 S)V’ S‘f: {1+k) ds

does not admit of a unique inversion. However, in the real domaln this does
not imply difficulties in principle and the transcendental coordinates £,n,{
may be introduced exactly as 1s done for the Lamé equation. These parameters
are not used herein. Here it is expedlent to transform from the symmetric
form of the X,u,v coordinates, convenlent for the development of the ana-
lytic theory of the Lamé equation, to the nonsymmetric p,u,v coordinates by

making the substitution s + a¢®= 0. Equation {2.1) then becomes
2 2 —
2y ®= _ Yy B — T o2 .
DY) =1— p ro— 0"-—-(1‘3—0 (e=V ad—c2) (3.3)

(in [8] the quantities ¢, a are denoted by h, k). The transformation
formulas to Carteslan Coordinates and Lamé coefficients are

x =Y _ [(*—p?) (2 —VI\h
ac ’ y_szmcﬁ}/pz—czV’c?«-v‘i . B, ((pa_az)(pa_cz))
- cVaa et ’ (p? — %) (2 — v\ 3.4
z = Vo—adVe—pya—w 2, = ((a2 ph) (i — c’)) 3-4)
- a? — ¢t ! _ {2 —V?) (@ — VA
a Va’ Hv—- ((a*—vﬁ) (c"—-—v’))

On the disk p = a we have

v ¥V 7= (¢ —v) pE— v\
Ec‘ y= ¢ ’ Hp' ( )

T= ’ pE — ¢
— (B _ _(pr—v?)dpdv 35
Hv“(c*—v’) ' s = ViE— &) (E—+8) (3.9)

Equation {3.1) is transformed to

(@ — @) (0* — ) G + 0 [0 — @) + (L + ) @ — )] G +
+[q—n(n+1+k)02]E=0 (3.6)

The indices relative to the infinitely distant point for thls equation
are {—n,n +1+ k) and Equation {2.6) admits of a polynomial solution for
the characteristic values of the parameter ¢
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E=K o)+ 2 a,0m (r= [—;« n]) (3.7

=0
and a quasi-polynomial

E =1L (0‘) = V0'2 - C‘ZZ bscn~1“28 (r e [”;1]) (3.8)
8=0
Substitution of {3.7) into (3.6) leads to the following recursion system
for the coefficients
2(s+1) 2n + 25 — 1o+ k) @sy = {g — (n — 28) (n — 25 — 1) d® —
—(n—25) A} ay + (n — 25 + 2) (n — 25 + 1) e'ay,y (3.9
B =a+ct et=2a% fr=d -+ ke
Putting ‘s=r + 1, a,,;,=0, we obtain @.,,=0 and then all the g, = ©

for g>r . Equating the determinant of the homogeneous system for the
remaining s to zero, we obtain an equation of r + 1 degree in q

Hence, 4n + 1 functions x(o) are obtained 1f n 1s even and #{n+1)
of the same functions if n 1is odd {(absence of multiple roots is assumed,
as actually occurs). In exactly the same manner for the coefflcients b,
the substitution of (3.8) into (3.6) leads to the system

2(s+1) (20 — 25 — 1 + k) by = {@1— (n — 25 — 1) (n — 25 — 2) X
X & —(n— 25 —1) g2 by — (n — 25 + 1) (n — 25) e*by;  (3.10)
=3+l -k, g=q—a
Repeating the previous reasoning, we find that the characteristic equa-
tion for ¢ is of §n degree if n 1is even and of #{n + 1) degree if n
1s odd. Hence, the total number of functions of both kinds x,L of degree
n 1s n + 1 . The products Xx{(u)K(v) and r{u)Z(v) are polynomials in
x,y Which have the same degree. The total number of functions of degree
from O to n, inclusively, is #{n + 1){n + 2), i.e. agrees with the number
of independent <lements of the basis of nth degree polynomials in x,y .
Under the condition of linear independence of the products g{u)g(v), they
can be represented by a linear combination of arbitrary nth degree polynomi-
als in x,y . But exactly as 1s done in the theory of ellipsoidal functions
{81, it is easy to prove the orthogonality of these products, hence, their
linear depencence indeed follows. Let Zf denote a function of degree n
which belongs to the elgenvalue g¢.* , a root of the characteristic nth

degree equation. The Wronskian
dE_° dE_*
n 3 n
B (3.11)

sl
H = E. =
of functions of the same kind will be polynomial in both cases. It will
satisfy the filrst order differentlial Equation
r(a 4148 —n (' +1+ Bl —(g,° — 9,°)
Vis—et||a*—a? [

eten®  (3.42)

2h(H =¢
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where
M) =|a* — e[ |o* — &M, o = sign (s* — @) (* — o)

Integrating this equality over the intervals ¢ < 6 <{ @ and —c<c<c,
at whose endpoints a(o) = 0, we obtain the relations

& R .E 2 (W) d
r(n+1+K8—n@+1+801{ L DL
SV (@ — o1 (a* — pyt*
= (¢,°— 9, S E,' () En” (1) dp
n n ) V(P"_C’) (a’—p.’)l‘k
¢ . (3.13)
[n(n+1+k) —n (0 +1+ ")1'8 VB, (W E,* (dv
DV (e — v (@@ — ¥
E (W E,* (v)dv

= (qn Y ) _SCV (@ — V3) (a® — vl)l-"

Cross-multiplying these equalities and substracting, we find that the
Integral

a ¢ '] ’
J s, 8 S S(p’z_v’) Ens (l") Ens (v) En"’(p‘) En" (V) dp’ av (3 14)
n,n = .
’ - K
22 Vet — ) (@ —v) (@* — p9 et — v
vanishes if n =n' and n' = qn‘i' simultaneously. But because the single
integrals (3.13) vanish for n =n’ and qn'=# qnf' or n#n’ and = qn,'v
the double integral (3L‘14) is alsc zero in these cases.
Thus, the integral (3.14) 1s not zero only when n = n’ and q,,‘ = qﬁf'
simultaneously. This integral is positive because u® > 2

Therefore, there ls a real normalization of the products E.,.‘ (}L) En‘ (‘V)
such that these products from an orthonormal system. Transforming to Carte-
slan coordinates by means of (3.5) and using the notation

P, (z, y) = E,' (n) E.° (v),

we obtaln

S S P (z, y) P,¥ (z, y) drdy _ (3.15)
(—at /a2 —y2/ bz)'/:(l—k) .
The integral 1s taken over the area of the ellipse
1 —2/a®>— 92/ 02 > 0.
Thuys the polynomials Pp.* (x,y) form an orthogonal system with weight
(1 — =2%/a% — y2 / bz)'/'(k'l) in the area of the ellipse. They thereby differ

from the V.A. Steklov polynomials-[9] which form an orthogonal system with
welght (1 — 2/ a® — yz/bz)u on the area of the ellipse, whereby a > O.

The remaining propositions on the theory of the functions FE,* (u) are not
developed here. This theory, as i1s seen, duplicates the theory of ellip-
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soidal functions with insignificant changes, hence, the proof that all the
eigenvalues are real and different and that the roots of the functions g% (]_1)
are enclosed in the interval {—¢, @), is also omitted.

Let us note only that the evaluation of the integral Jn;;fsl which 1s needed
for the normalization, reduces to Just rational operatlions, exactly as in
the theory of elllpsoidal functions [ 8] because the integrals

K, = R o ot — ¢ [T 6% — a2 |5 go {r a natural number)

taken within the limits {¢,e¢) or (0,¢,, are expressed by linear combinations
of the integrals K,, K {which are identical for both ranges of integration)
via the reduction formulas, Hence, the integral (3.1%) equals the product
of rational functions of a, ¢ and the integral

ac

“ @©? — V) dpdv
9 V(Hz — %) (2 — v?) (a? — p) i (g% — vk

Transforming to Cartesian coordinates by means of (3.5}, we remark that
the integral 1s evaluated by elementary means and equals {1 - k)~-1 (ab)r.

4, Let us now deduce the integral equation for the products
s ES 3
Py (z,y) = Ex’ (W) Ex (v)
by using Formulas (1.5) and {1.6).

Let us introduce a function of the second kind s * (p) . This is the
second solution of Equation (3.6) in the interval 6 > p{where the first
solution is x,* (p) ) subject to condition 7, {(p) - 0 as p ~ = . Evidently

the solutlion is expressed by Formula‘(constant factor is omitted)
[e o]

Fns (P) = Ens (P) S ds

S — 44
3 (ELEFAQ @40

Let V (z,9,0) = P," (2, y) on the disk. The function V(x,y,2), 2
solution of Equation ('1.4), is determined outside the disk by Formula

F.?(0)
F.P(a)

V(z,y, 2 = E.f () E.*(V) (4.2)

Evaluating the derivative 23V/5z by means of (3.4}, we find

v _ V(pz—-a’)(a’—u“)(az—-vz){ @—c)p OV _
oz cVa—a P —w) (" — ) o

(n—chp 1% (2— v Lid
— e e ) (43)

Hence

lim 2.2 = lim #EE= AV E N @— & _

oea 02 aVE—dE—p) (e —v) %P

5 u?) (a2 — oy /2E-1) o, s av
L R TR R
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But since iz: B Ens (}l) Ens (\’) anl (P)
® T Fe@

aF' ()  dES(F  ds 1
= e - 4.5
o o § (£, @OPA@Q) &, (PP AP (4:3)

then
im gk B WES ) (@t p) (@f — WD
il:lal z 0z E‘n.s (@ Fﬂ! (a) a* (@ —c¢ ok (4.6)

Evaluating the source density by means of (1.6), we obtain in Cartesian
coordinates
(1 —2x%/a¥— 8/ bl)'/:(k—l)

8 \
2mabE,* (a) F,’ (a) Putn 4.7y

Expressing the value ¥(Z, ¥, 0) in terms of f(z, ¥), we obtain

1 SS(1-—E’ia’—n’/ bey/k-1) p & (&, w) dE dn
2nabE,* (a) F,,* (a) [ — B)F + (y — 3 00
This is indeed the desired integral equation. On the basls of the general

theory, it 1s now possible to write at once the series expansion of r '7X
in products of the elgenfunctions. But there 1s no need for this expansion.

P, (@, 9=

More important is the correspondence between the value of V (z,y, 0) =
= P, (z, y) ana 7(x,y) by means of (4.7). If ¥{(x,y,0) = F(x,y) 1s an
arbitrary nth degree polynomial, then by expanding it in the products
P (z, y) = E. (1) En’ (v) and comparing the density p,*(x,y) to each
of the members of the expansion by means of (4.7), we will find that
fl,y="Ffilz.y) +f(z,9) + ...+ (z,9) equals the product of
a polynomial of the same degree by the function (1 — 2®/ a® — y’/bzrhm“n.
The theorem inverse to the theorem given in [4] 1s thereby proved, l.e. 1t
has' been proved that if a polynomial is on the left-hand side of Equation
(0.1), then the solution of the equation is a polynomial of the same degree,
but with other coefficients, multlplied by (1 — 2%/a? — yz/bz)'/'("‘l‘,

This theorem 1s an analog of a theorem of Galin [10) on the pressure of
am elliptical planform stamp on an elastic half-space. The theorem of [4]
and this theorem, together, yield a basic for the applicatlion of the method
of undetermined coefficlents to the solution of Equation (0.1). If evalu-
dtions of the function w(x,y) cutslde the limits of the ellipse are not
required, then calculation according to [4] yield the solutlon by simpler
means than the evaluation of the expansion of ¥{x,¥,0) in »p,* {x,¥) .

When the evaluation of w(x,y) outside the boundaries of the ellipse 1s
necessary, the formulas of Sections 3 and 4 herein yileld a finite algorithm
of the solution {under the assumption that w(x,y) is a polynomial).

5. Let us derlve formulas connecting the parameters of rigid displace-
ment of a stamp with loading ¢ and moments N, M, acting on the stamp
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0=\\t@ndedy, M.={yr@vdzay, M={\ai(z1)dzqy
(5.1)

Let ue ascume that the cetiling w(x,y) is represented by Expression
w(z,y) =8 + azxr + By + Wz, y (W (2, y) =0 (r¥) (5.2)

The values of the potential .V(x,y,o) differ from wlx,¥) by the constant
factur X {stiffness of the sole)} which has the [force {length) 2 %] &imen-

clon
V(z, y,0) = Kw (2, y) (5.3)
In general, ¥ 1s an empiric coefflcient. For a homogeneous elastic

nalf-space K = (nk)/(1 — #%).

Expanding w(x,y) and rs{x,y) in serles of eigenfunctions p,° {x,y),

we have in conformity with (4.4)
oo n-l

w (z, )%= X D Co'Po (2, y) (5.4)

Nn=0 $==0
% ’E‘j KcnsPns {z, ¥)
oz, y) = ;
(z.9) S A 2mabE M) B, (a)

As a consequence of the orthogonallty of the family p.° (.x,y) we obtain

(V7@ 9 P (2, ) dady =

P dx dy .
Welen) P @ 9 i . 69

22 112 Ho(k-1)
.

__ K
2nabE * (a) F,*(a)

(integrals taken over the area of the ellipse)

Let us apply this formula to lower degree polynomials

Py (z,y) = 1, Pye (z,y) = =, Pt (z,y) =1y,

We obtain _ K w(z, y)dzdy 5 6)
Q= 2nabEy’® (a) Fo' (a) S S (1 —z?/a%— 2] b2)'11=k) (.
_ K yw (z, y) dzdy ~
M, = 2nabEy (@) il (a) S S (1 — 22/ a2 — y2 ] b2y /7R (5.7)
— K zw (x, y)dz dy
My, = 2nabliy® (a) F'1° (@) S S (1—a/a2—y?/ bz)‘/z(l—k) (5'8)

Keeping in mind the corresponding results of Galin in the three-dimensional
problem of the theory of elasticity [10], let us uce hiu notation for the
coefficlents in front of the 'integr’als in the above formulas

A = K [2nabE\° (a) F,° ()], B = K |2nabE,* (a) Fi* (@)1
C = K [2nabE,° (a) F,° (a)1! (5.9)
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Moreover, let us use the notation

Jl—“aﬁ 1_."_’_,23.)""‘ Y gy = 2%

PEA T =ATRHETH
xﬁ yz '/ t(k“l ) _ Zﬂab:'l
L=We(l—% %) @d-grhers 610
¢ 22y Ak 2mab
Jo=“(i-—;‘;—-b~2) dzdy = o

Inserting Expressions (5.4} into Formulas (5.6) to (5.8) and solving the
obtained equations for 6,q,8 we find

8 wCJ"{Q CSS (1-—1'*/a!.-—y!/b=)‘/a(1"‘>} (5.11)
- 1 W (z, y) da dy

a'_~ ;17—1 {Mv —4 S S (1—a2/a—y¥/ bﬂ)’/s(l—k) (5'12)
yW (z, y) dzdy

T Bh {M —B S S (4 — ) al— yb | bay a0 } (5.13)

These formulas which express the parameters of rigld displacement as a
function of the force ¢ and the moments 4, ,¥,, have the same form as the
corresponding formulas of Galin, but the values of the constants are differ-
ent here and the degree of the weight function in the integrand is here
#{x — 1) instead of —% . Let us express the coefficients 4,5,C explicitly
in terms of integrals.

Returning to Formula (4.1), we note that the product By’ (a) Fy’ (a) 1is
independent of the constant factor in the expression for E,,‘(p)

In this connection, let us assume for simplicity
EC® =1, E°(@ =p  Erp=VpP-2 (5.14)

Substitution of these functions into (4.1) vields

ds

o
33‘ V(e — o) (o — at)***
!

o (@) Fy° ()

atds (5.15)
V(@ — e (T — e+

EL(a) Fy°(a) =

{a% — ¢ ds
1 F1 =
Eyt(a) Fy' (a) 3 (& — )V (0F — o) (" — a)+*

Making the change of variable ¢ = gt and introducing the results into
(5.9), we obtain

Kd* Ka¥* _ Ka*
4=5 b, * B = b (1 — o) C= 2nbpo

where the {,, §, and §, are nondimensional coefficients expressed via the
integrals
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¢ dt ¢ dt
= S Ve—ae—or "7 § 2V - @ — 1
¢ dt
= § @—e)V (@ —e (it — )

Here e = g/¢ 1s the eccentricity of the ellipse. For % = 0 and
K =aE/(1 — v?) Formulas (5.15), {(5.16) and {5.10) transform into forwulas
{9.35) of the monograpnh [10]. If the stamp 1s a plane, i.e. ¥ = O, then
Formulas (5.11) to {5.13) are simplified. Taking into account {5,10) and
(5.15) we obtain in this case

(5.16)

1
B=pEDQ W A+BEER W AFBOEE (547

Kaltk Kadtk Kg¥tk

In order to have the possibility of applying these results to estimating
the displacement & of a flat stamp of arbitrary planform, it 1s necessary
to extend the maximum principle to the function F , the solution of Equation
A*W =0 which it 1s expedlent to consider in the whole space with the slit
along the plane domain 2 = 0 occupled by sources. In thils space the func-
tion V¥ defined by (1.5) evidently has no local extrema for z # 0 . But
under the condition f(x,y) > 0, the function V¥ has nc local extrema also
for 2z = 0 . This can be seen by evaluating the second derivatives at the
polint (xb,yo,o). The characteristic equation of the matrix of the second
derivatives has two negative and one positive root under this condltion.
Therefore, local extrema are missing at these polnts also. From thls same
analysis it follows that the surface z = V(x,y,0) consists of hyperbolic
points outside the cut.

As applied to a flat stamp, this means that if the stamp is moved without
having any deflection (o = 8 = 0), then p{x,y) < &8 everywhere beyond the
stamp. Let & denote the domain under the stamp and F the interilor of
an ellipse such that E O §. Then

w=48 on §; w=gz,y <8 on E—S (5.18)
Now, applying Formula (5.6) to the domain £ , we find
Kal+k 19
CJB = (5.19)
Q< = T

In order to cobtain an exact upper bound for ¢ , evidently that one of
all the ellipses E 205 should be chosen on which the ratio a1+k /WPo achleves
the exact lower bound.

*

6, Let us now consider the limit case when the elllptical domair “.ccomes
eircular and the op,u,v coordinate system degenerates into the n,8,p co-
ordinate system of an oblate spheroid

z=rcosg, y=rsing, z-+ ir=asn (n-+6) (6.1)

In this passage to the limit on the vanishing section o=v, 0gv<e,
¢ ~ 0 Equation (3.6) yilelds

&2E
_—d‘P’ + mE =0, g = m2a? (6.2)
and the functions Z{v) transform in [8] into cos mg, sin mp . On the

remaining sections we have

10— 1) c*%+u<2+k) r—1] ‘%4— fmt—n(n+1+ B PIE=0

= conm for {>1, E=1sin® for 0L <1 L=o0la)

6.3)
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Equations (6.2) and (6.3) may be obtained directly also by separation of
Equation A*V =0 in the n,8,p coordinates, which ylelds

@H df 2 - —
S+ (e o+ keonn I8 (2425 )H~o (h=rn(n+1+4 B) (6.4)

cosh® 1}
28 de m?
— 8 — bl —_ =
d62 (eot k 10 0) dé + (k sin? 0) 6=20

The substitutions § ==cosht}, { = sin® lead to {6.3). But for an isolated
analysils, the relation to tne general theory presented above is touched upon.
The passage to the limit makes clear why the results for a circular domain
are expressed in comparatively simple hypergeometric functions while the
other case of degeneration (infinite strip, elliptic cylindrical coordinate
system) requires involvement with Mathlieu functions. In the first confluent
case a decrease in the number of singular points in the Heun equation (3.1)
occurs and the infinitely distant point remains regular; 1n the second case
we obtain an irregular point at infinity even when % = O and aV = 0O {in the
problem of the theory of elasticity for half-space).

The basic results for the circular domain are known. But they have been
obtalned without relation to the theory of equations of Fuchs type, by means
of direct, sometimes very complicated calculations [12], by methods which
are very diverse in their conceptual bases. Let us show here how these re-
sults may be obtained on the basis of the general theory developed.

Let us note at once that ¢ = O l1mplies directly the transformation of
the systems of three-term equations (3.10) and {3.11) into a system of two-
term equations for the coefficients of the hypergeometric series. Equation
(6.3) is reduced to

&£E . (1 /g 4 1k\ dE m—n{n-F1+Rup
Fr (”“+ ' ')E+ Tl w—1) E=0 ©-5)

u u—1

by the substitution ¢ = u°

Evaluating the exponents, we find that the scheme of solving thls equa-
tion will be [13]

O, 1) oQ,
E=pP { i.m, 0, — i/on, u} (6.6)
—1em, YMg—1k, Ygn+ 18,

Performing the reduction to the standard scheme of the hypergeometric
equation we obtain

0, 1, 00, -a =1, (m — n)
E=ul/’mP{ 0, 0, a, u } ) < =! (m+n+1-F k)) 6.7)
t—e¢ ¢—a—>b b c=m-+ 1

Limlting ourselves to the case of analytic ¥(x,y,0), we note that n and
m are non-negatlve integers, n_>m and the difference 7n —m 1s &n even
number. Equation (6.5) then has the polynomial solution

E™=uhmF @y (m—n), Yy (m-Fn+ 1+ 8, m+ 15 0 (6.8)
To the accuracy of a constant factor the function F agrees with the
Jacobl polynomial
Pn(“'m (x) where a = m, B =1/, (k— 1), 2 == ] — 2y
as follows from the formulas representing Jacobl polynomials by means of
hypergeometric functions [7] and [14]. Thus
E,” (sin 8) = (sin O)mP,,fm’l/‘G"m {cos 260) 6.9)

{(n—m}
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can be taken as the normal form of the solution.

Since Equation (1.4) transforms into the equation AV = O for % = O ,
the functions (6.9} transform into the associated Legendre functions P:&nse)
for % =0 . This is easily verified by applying Theorem (4.1) from [ 14]
and the formula for differentiating Jacobl polynomials.

From the weight formula of the Jacobi polynomials w (z) = (1 — 2)* {1 + a:)B
we find the welght of the functions £P® by simple transtormation

w(Q) = ¢ — gt O<E<Y (6.10)
w () == sinB cos* O 0 <0 <Y,m
These formulas are easlly verified directly by means of Equations (6.3)

and {6.4). The above 1is sufficient for the solution of the Dirichlet prob-
lem. DBy taking the normal sclution in the form

F,"{(chn)

P p m . »
mmE TR ™) E,.™ (sin0) sin cos m@

(6.11)

a computation may be made which is analogous to that made in Section 4, and
the elgenvalues may be found for the functions Igfn(r/a) of the integral
equatilon a on

= cos modo 6.12
Fr (1) & sf (s) dsS (rt 4 s — 2rscos (1))‘/2(1“‘) ( )

o

0
which is obtained from (0.1) by expanding the functions in Fourler series in
cos mp and sin mp . Let us note that the equation for E,™(r/a) differs
from(6.12) by welght factor (1 — 2/ q2)"e(k-1),

Hence, it has been shown that. the problem for the circular domailn is in-
cluded in the more general theory developed in Sectlions 1 to 4. The eigen-
values for the functions £ are found in [12].

7. Let us consider a generalization of equation (6.12) which is associ-
ated with the fact that 1ts kernel 1s represented by different hypergeomet-
ric functions on the sections O < g < r and r < s < g of the interval
of integration, namely [7]

an

c0s nw do _2al(nt+Yy A+ 1)
S (2® + y® — 2y cos @)/ T Mo+ T (n+1)
n, ~n—r-1 1+r 14 r. z?
X &y F(n+m§—, T mt -y?) (7.4)

if ¥*< y® . For x® > 3® the letters x and y exchange places. (It 1s
here convenient to change the speclal notations of the preceding sections
to general notations). Representation of (7.1} by an Euler integral was
used in [4] to obtain the solution in closed form . The same function may

be represented as o

TP (Y, (4 — 1) i iy
TLAT Y §’n<x 8 I, () i de a2)

Such a representation has been used in [11] and [12] for the came purpose.
The solution is then obtained either by applyling the Barnes integrals [11]
or by the reduction to a Wiener-Hopf equation with the subsequent use of the
method of M.G. Krein [12]. A natural generalization of the form of the ker-
nel {7.2) is the discontinuous Weber-Schafheltlin integral [7]
fo ]

(r) _¥{ P oy e 9T B, —1l=T~D Tod+r+p+9)
Tra e EJPMNQ(WH'& B r A= F =T AF P
tdtrtptq Ldrtp—g. g, 2
xF( tr 2” q, r'zp q,1+p,,§2—) (7.3)

2?2 <y, Re(p+g+r+1)>0, Rer{t
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The second formula is obtained by permutation of the letters (x,p) = (y,q)-
An equation of the form
'3

fla) = SW,,‘,;’ (z: %) @ (¥) dy (1.4)
0

was considered in [12] from the viewpoint of the Wiener-Hopf and the Krein

methods. But 1t is known that any equation of Wiener-Hopf type may be re-

duced to two duplicate Volterra equations. This "Copson method" seems very
simple and powerful in a number of cases and has been successfully used by

various authors [15], including the present author in [4] and other works.

In this case this method leads to the inversion formula

P @) = — 275t X
¢ +r+p+ T +r+qg—p)
a t
d f-r-rg d a*?P f (u) du
Xz S {(,z  go)horee-p) dt S (@ — u) 0T+~ }dt (7.5)
x 0

which holds under the following sufficient conditions: (1) Rer& [0, 1],
(2) |Re(p— q) | << Re (1 — 7); (3) the product gltP f(x) is integrable in the
whole segment [0O,a); if it has a singularity at the endpoint x = O, then
it 1is not higher than QO (z™®), 0 < a < 1

Not e . By integration by parts (7.5) is reduced to a form which may
be more convenient since the singularity at x =g willl be explicitly iso-
lated

¢ @)= 2 Tat ( ¥ (@ _
T+ r+pE T LA+ r+g—p) | (a2 — 27 aiT4a-n
V' (e) de
_S (2 — z91(1-T+4-P) } (7.6)
where x , o
—p-q-r 8 ul*? f (u) du
¥ =t P-q —‘—(S) o — u’)'/!(l"”'H)

Proof . Let us represent the functions F in (7.3) by the Euler
integrals

1

CA = T (o) a-1 (4 —_ )01 (4 — 13)~b d¢

Flabon=pord o eta—o=ta—u

0

We nave for the function in the first formula of (7.3)
rd+p) 5

Tl +r4+g+pP)TCLUEFPp—9g—T7)

22 )'/.(—1+q—p—r)

F =

2 dt (1.7)

1
% S HLHaHPn) (L gtl-14p-a-T) (1 —t
o

Because of the restrictions (1) and (2) imposed on the parameters, such
a representation is admissible. Let us substitute ¢ = Sa/x into (7.7).
Inserting the result into (7.3), we obtain

W0 o g) QU+r Py~
pa (& Y) TChUl—rF+Pr—Q T 00 —r+q—2p) )

x
x S (a8 — g0)ACIHP-0T) (43 _ 3) h(-1H0-P-T) PHE4T g (7.8)
0
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Performing the same calculation with the second formula of (7.3) we obtain
an analogous result with the sole difference that the letters x and 2
have exchanged places with the letters y and g¢

Both results may be written as single Formula

147 ,,-D, —¢
e e e A e
min(x,y) (PHEH gy
X (28 — £3)H1r4a-D) (2 __ 49y 14r49~0) (7.9)
Let us introduce the notation (7.10)

YW =yt g(x)=2‘1"-1‘(‘_"‘;P_‘7)r (1+’4;‘1—P)xp“,)

Then Equation (7.4) becomes
x u

tPYET gy
§¢ ) dy § (a3 — 3)WHT+a-D) (2 __ 13)'ha(147+P~0) +
a x
tPaT gy
+ Sc'p ) dy§ (@ — @)D (a _ i) € () (1.41)

In connection with the restrictlons imposed on the parameters, a change
in the order of integration is admissible in both components. Performing
this change (by the Dirichlet formula in the first term) and combining the
results, we reduce (7.4) to

Ll ¢ ¥ (y) dy
§(xz — ts)’/.(1+r+q—p) dt &(y, — p) a0 = g (z) (7.12)

The problem has thereby been reduced to the double solution of Abel equa-
tions. Let us recall that the Abel equation

F_o@ar
S @ - =1
0
with continuous right-hand side has the unique solutilon

X
2sinmn d yf (v) dy
? (@) = a4 75 3 2y1-m.
Jat— )

in the case O < m < 1 (under the condition that the integral converges at
the lower 1limit)}. For m < O the solution exists only under additional
restrictions on the right-hand side. Conditions (1), (2) and (3) guarantee
unique solvability of Equation (7.12). Let us note that equivalence was
not disturbed anywhere during the reduction of (7.4) to (7.12). Solving the
Abel equations successively, we find (7.13)

a t
1) = Y (y) dy pgr 2 (ttg—pn d ug (u) du
o (®) 3 0 — @ IR -~ Cos 5 at ) (® — u3)Ta-T+p-0)

—— 2 s rtP—gn d ¢ to (t) dt
Y (@) —-cos 5 e S T (7.14)
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Combining these results and returning to the previous notations (7.10),
we obtain (7.5) after simplifying the factor before the integral, q.e.d.

In conclusion, let us recall that the success of applying the apparatus
of analytical theory of differential equations to (0.1) 1s due to the special
form of the kernel (Section 1). This circumstance evidently should be taken
into account in constructing mathematical models of a linearly deformable
foundation.
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